Scour Evaluation and Countermeasure Design

by
Kirk Harvey
Bridge Hydraulic Engineer
Nebraska Department of Roads

Scour

- To remove dirt and debris from a pipe or ditch
- To clear, dig, or remove by or as if by a powerful current of water.
- Is the result of the erosive action of flowing water, excavating and carrying away material from the bed and banks of streams.

Evaluation of Scour

Field Scour

Scour by calculation

Field Scour Assessment

- Visible Scour (scour area apparent)
 - 1. Undermining of abutment wall
 - 2. Exposed pier/bent piles
- Non-visible (scour area non-apparent)
 - Manual or electronic probing the soil at the abutment wall and the base of piers and bents

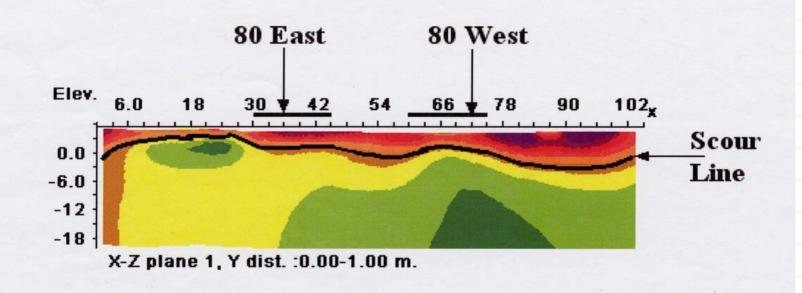
Manual probing

- Measures scour depths
- Measurements limited to length of probe

Electronic probing

- Electronic probes (by USGS)
- Measures greater depths than manual probe

Electronic Resistivity Meter


Measures soil depths of different densities

Electronic Probe layout

Obtaining density readings at constant intervals.

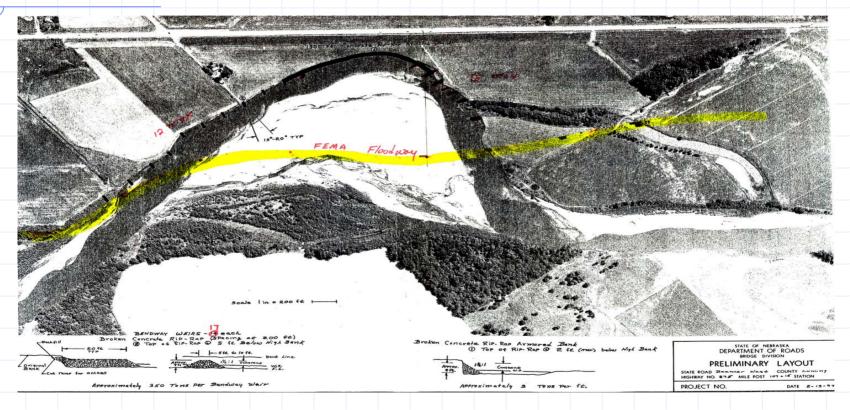
Electronic scour output

Color graph showing depths of scour along the channel.

Scour by calculation

Evaluation by calculation

- 1. Live-Bed Contraction Scour (HEC-RAS) $Y_2/Y_1 = (Q_2/Q_1)^{6/7} * (W_1/W_2)^{k1}$
- 2. Local pier Scour (HEC-RAS) $Y_S/a = 2.0 K_1 K_2 K_3 K_4 (Y_1/a)^{0.35} Fr^{0.43}$


Calculation by velocity assessment

1. (Q= V_{scour} A_{scour}) 1 mm D₅₀ Sand \triangle 5 ft/s; Clay \triangle 7 ft/s

Scour Countermeasure Design

- 1. Meandering channel
- 2. Degrading channel
- 3. Channel headcuts
- 4. Abutment scour
- 5. Bridge failure

Example of active meandering

Elkhorn River was cutting North through a corn field to Hwy. 275.

Impacts of active meandering

- Unstable banks
- Loss of farmland
- State highway in jeopardy
- Meandered an average of 50' per month

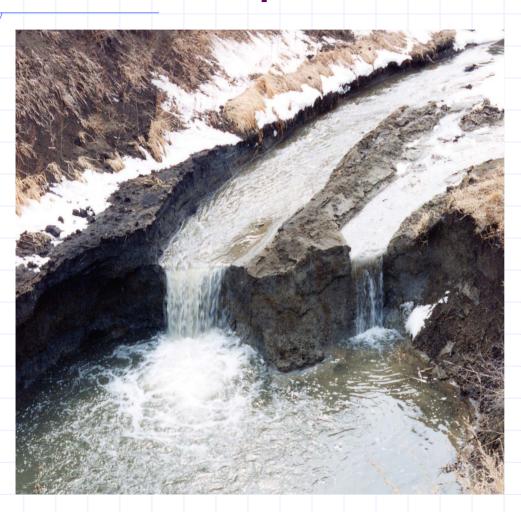
Countermeasure for Meandering

- Placed BendwayWeirs andbroken concrete
- Thalweg shifts away from bank
- Reducesvelocity at thetoe of the bank

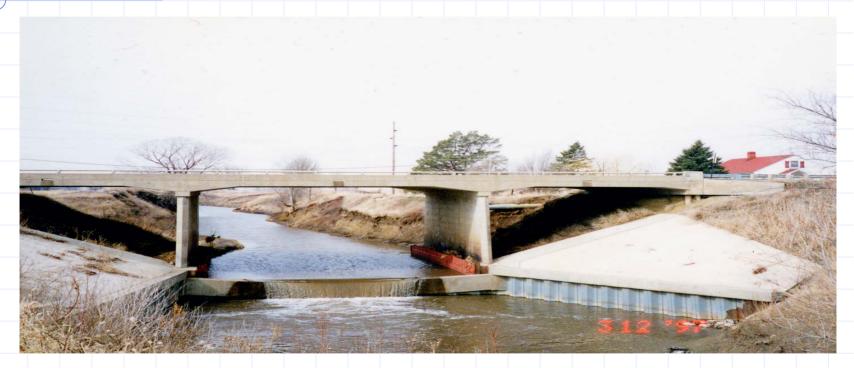
Results of countermeasure

Vegetation re-established along the bank line

Example of degradation and local scour


- Little NemahaRiver
- Channel degraded
- Pier piles were exposed
- Local pier scour
- Structure integrity

Countermeasure for exposed pier footing


- Sloped the sides at a 2H:1V.
- Rip-rapped around the pier footings and slopes up to the berm.

Example of a Headcut

- Logan Creek
- Downstream of bridge site
- ♦ 5' headcut
- Due to straightening of the channel downstream.

Headcut countermeasure

- Drove sheet pile in the channel, along the wings and up the slopes to stop the headcut and protect the substructure.
- Poured concrete slope protection on a 2H:1V slope up to the berm.

Example of a ditch headcut

- DegradedPlum CreekTributary
- Bridge was stable
- Degradation advancing up the road ditch

Ditch headcut countermeasure

- Gabion Drop structure installed
- 75' long with a 7.5' drop in elevation

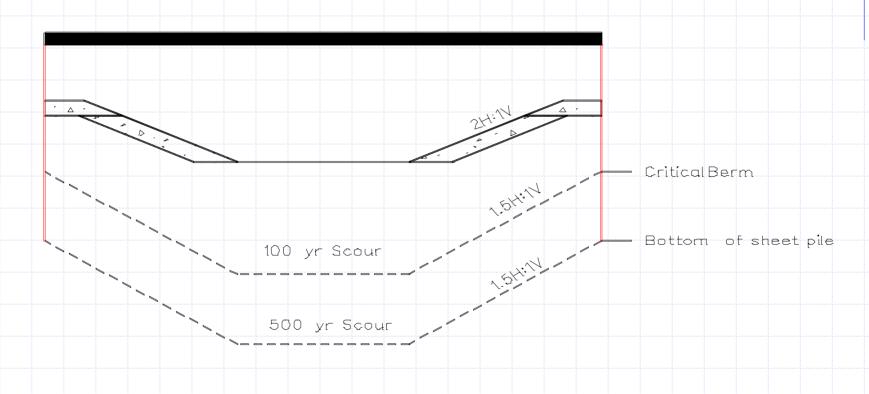
Example of abutment scour

- Concrete wall abutment
- Undermining abutment wall
- Approach failure imminent

Abutment scour countermeasure

- Drove sheet pile around abutment and filled in with concrete.
- Placed broken concrete around abutment.

Example of abutment scour


- Undermining abutment
- Exposed piling

Abutment scour countermeasure

- Poured 8' retaining wall underneath bridge
- Drove steel sheet pile on the sides
- Broken concrete riprap

New countermeasure sheet pile wall abutment design

- Q₁₀₀ scour critical berm
- ◆ Q₅₀₀ scour bottom of sheet pile

Example of a bridge failure

- South Fork Big Nemaha
- Active meandering channel
- Flood of 1993

Arial view

Meander cut-off

Bridge failure

Tree debris on East abutment routed flow toward West abutment, washing it out.

East side channel stabilization

Sloped and rip-rapped 2H:1V up to the annual flow elevation and then sloped 3H:1V Flowline 3:1 Original Ground

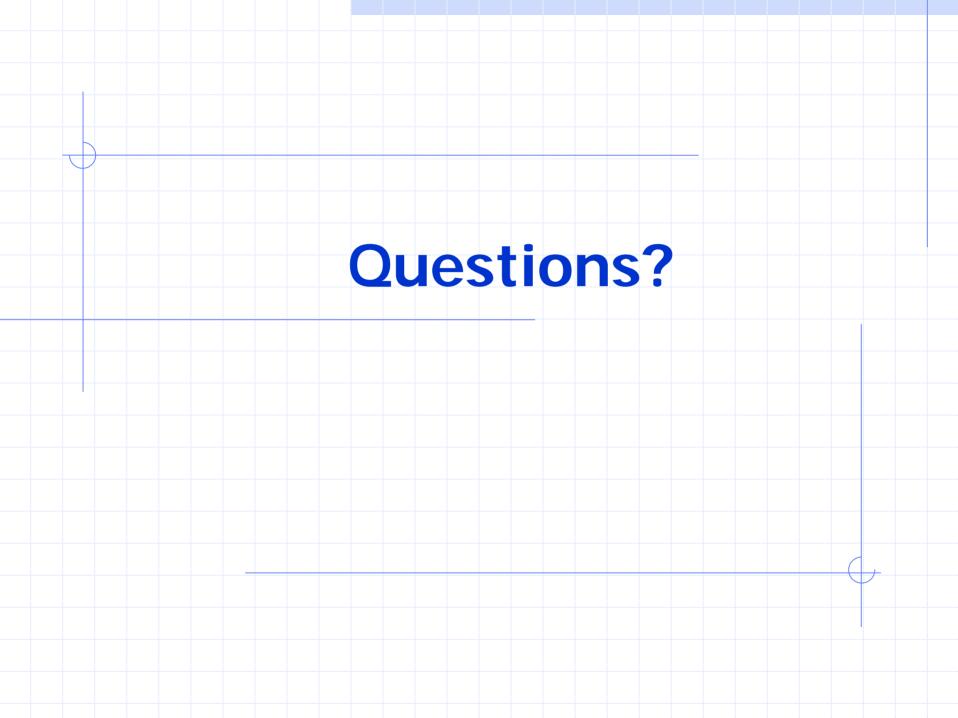
Stabilized channel

- Vegetation has filled in on both slopes
- Stable banks

West side channel stabilization

- Two tier design
- 2:1 slope
- 15' berm at annual flow

Original Ground


2:\(\frac{1}{2}\)

Flowline

Stabilization channel

- Vegetation has filled in
- Stable banks

